Aspect-based Sentiment Classification with Aspect-specific Graph Convolutional Networks

Chen Zhang¹, Qiuchi Li², Dawei Song¹

¹Beijing Institute of Technology, China. {czhang, dwsong}@bit.edu.cn

²University of Padua, Italy. {qiuchili}@dei.unipd.it

EMNLP 2019, Hong Kong, China

- Problem Formulation
- Related Work
- Motivation
- Proposed Model ASGCN
- Experiments
- Discussion
- Conclusions & Future Work

- Problem Formulation
- Related Work
- Motivation
- Proposed Model ASGCN
- Experiments
- Discussion
- Conclusions & Future Work

Problem Formulation

• **Aspect-based Sentiment Classification** (ABSC): aiming at identifying the sentiment polarities of aspect terms explicitly given in sentences.

From the speed to the multi-touch gestures this operating system beats Windows easily.

- Aspect terms (a.k.a. opinion targets): operating system, Windows
- Corresponding sentiment polarities: positive, negative

- Problem Formulation
- Related Work
- Motivation
- Proposed Model ASGCN
- Experiments
- Discussion
- Conclusions & Future Work

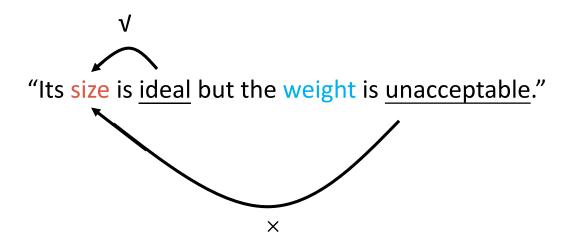
Related Work

- Feature-based approaches
 - Manual features + SVM (Jiang et al., 2011)
- Neural network-based approaches
 - Embedding oriented features (Vo and Zhang, 2015)
 - Recursive neural networks (Dong et al., 2014)
- End-to-end approaches
 - Mainly based on recurrent neural network and attention mechanism
 - TD-LSTM (Tang et al., 2016a)
 - MemNet (Tang et al., 2016b)
 - TNet (Li et al., 2018)
 - etc.

Limitations of the SoTA

Observation 1:

The attention mechanism commonly used in previous ABSC models may result in a given aspect mistakenly attending to *syntactically unrelated* context words as descriptors



Limitations of the SoTA

Observation 2:

These models are inadequate to determine sentiments depicted by multiple words with *long-range dependencies*

"The staff should be a bit more friendly."

Long-range dependency

Limitations of the SoTA

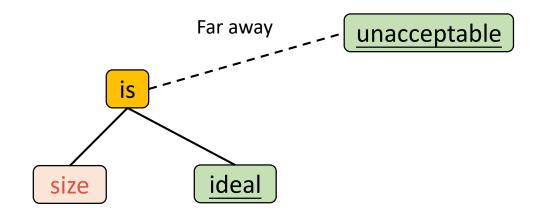
Sole attention mechanism (at semantic level) is not enough!

- Problem Formulation
- Related Work
- Motivation
- Proposed Model ASGCN
- Experiments
- Discussion
- Conclusions & Future Work

Sole attention mechanism (at semantic level) is not enough!

How about incorporating with dependency trees (at syntax level)?

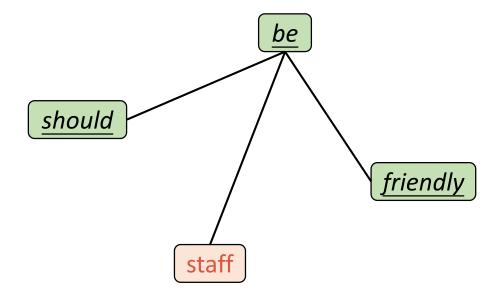
"Its size is ideal but the weight is unacceptable."



Dependency Tree

Syntactically unrelated words can be ignored by the aspect terms via distance computing

"The staff should be a bit more friendly."



Dependency Tree

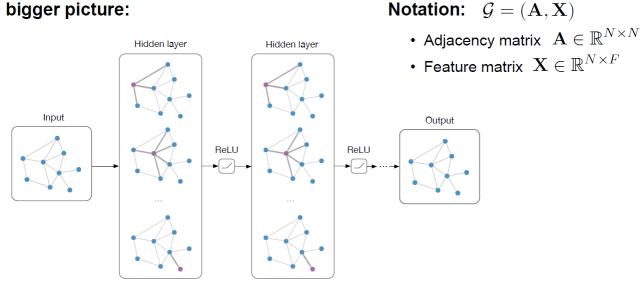
Long-range dependencies can be shortened

- Dependency trees can
 - draw long sequences of words that are syntactically relevant closer
 - keep irrelevant component words far away from aspect terms
- but they are insufficient to
 - capture words' semantics
- We propose to build Graph Convolutional Networks (GCNs) over dependency trees to
 - draw syntactically relevant words a step closer to the aspect
 - exploit both (latent) semantics and syntactic information

GNNs

Graph Neural Networks (GNNs)

The bigger picture:



Main idea: Pass messages between pairs of nodes & agglomerate

Slides from "Structured deep models: Deep learning on graphs and beyond", Thomas Kipf, 2018.

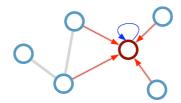
GCNs

Graph convolutional networks (GCNs)

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

Consider this undirected graph:

Calculate update for node in red:



Update rule:

$$\mathbf{h}_{i}^{(l+1)} = \sigma \left(\mathbf{h}_{i}^{(l)} \mathbf{W}_{0}^{(l)} + \sum_{j \in \mathcal{N}_{i}} \frac{1}{c_{ij}} \mathbf{h}_{j}^{(l)} \mathbf{W}_{1}^{(l)} \right)$$

Scalability: subsample messages [Hamilton et al., NIPS 2017]

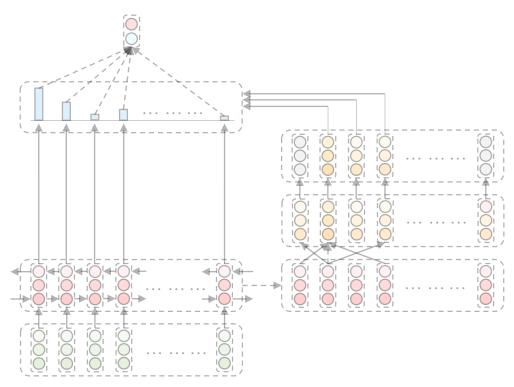
 \mathcal{N}_i : neighbor indices

 c_{ij} : norm. constant (fixed/trainable)

Slides from "Structured deep models: Deep learning on graphs and beyond", Thomas Kipf, 2018.

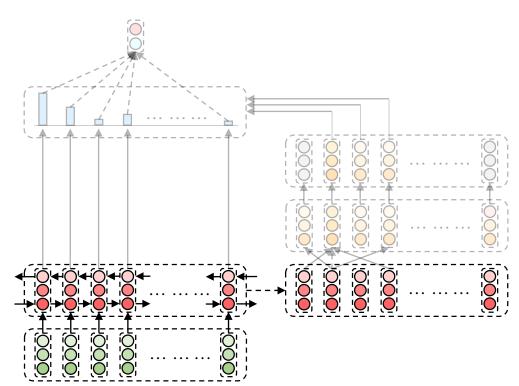
- Problem Formulation
- Related Work
- Motivation
- Proposed Model ASGCN
- Experiments
- Discussion
- Conclusions & Future Work

Aspect-Specific GCN (ASGCN) - Overview



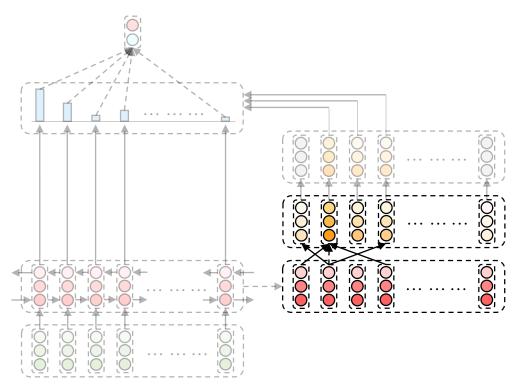
- ASGCN is composed of
 - Word embeddings
 - Bidirectional LSTM
 - GCNs
 - Aspect-specific masking
 - Attention
- Dependency tree is regarded
 - As a graph (ASGCN-DG) or
 - As a tree (ASGCN-DT)

Embeddings & BiLSTM



- With the word embeddings of a sentence, a bidirectional LSTM is constructed to produce hidden state vectors \mathbf{H}^c
- Following Zhang et al., 2018, we make nodes on the graph aware of context by initializing the nodes representation to \mathbf{H}^c , i.e. $\mathbf{H}^0 = \mathbf{H}^c$

GCNs



Graph convolution at l—th layer (totally L layers)

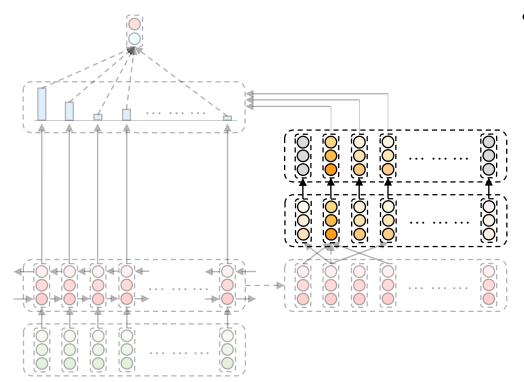
$$\tilde{\mathbf{h}}_i^l = \sum_{j=1}^n \mathbf{A}_{ij} \mathbf{W}^l \mathbf{g}_j^{l-1}$$

$$\mathbf{h}_i^l = \text{ReLU}(\tilde{\mathbf{h}}_i^l/(d_i+1) + \mathbf{b}^l)$$

We also incorporate position weights,
 which is commonly used in ABSC
 models, with GCNs

$$\mathbf{g}_i^l = \mathcal{F}(\mathbf{h}_i^l)$$

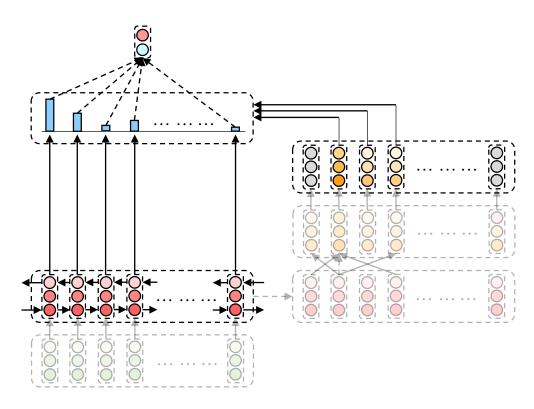
Aspect-specific Masking



 Aspect-specific masking is proposed to get aspect-oriented features

$$\mathbf{h}_{t}^{L} = \mathbf{0} \quad 1 \le t < \tau + 1, \tau + m < t \le n$$

Attention



 Attention scores are computed based on inner product (to facilitate the masking mechanism)

$$\beta_t = \sum_{i=1}^n \mathbf{h}_t^{c\top} \mathbf{h}_i^L = \sum_{i=\tau+1}^{\tau+m} \mathbf{h}_t^{c\top} \mathbf{h}_i^L$$

$$\alpha_t = \frac{\exp(\beta_t)}{\sum_{i=1}^n \exp(\beta_i)}$$

Final representation is computed as

$$\mathbf{r} = \sum_{t=1}^{n} \alpha_t \mathbf{h}_t^c$$

$$\mathbf{p} = \operatorname{softmax}(\mathbf{W}_p \mathbf{r} + \mathbf{b}_p)$$

- Problem Formulation
- Related Work
- Motivation
- Proposed Model ASGCN
- Experiments
- Discussion
- Conclusions & Future Work

Datasets & Settings

- TWITTER: built by Dong et al. (2014), containing twitter posts
- LAP14, REST14, REST15, REST16: respectively from SemEval 2014 task 4, SemEval 2015 task 12 and SemEval 2016 task 5 (Pontiki et al., 2014, 2015, 2016), consisting of data from two categories, i.e. laptop and restaurant
- The number of GCN layers is set to 2, which is the best-performing depth in pilot studies (more illustration later)
- More parameter setting details could be found in paper
- Accuracy and Macro-Averaged F1

- Baselines
 - SVM (Kiritchenko et al., 2014)
 - LSTM (Tang et al., 2016a)
 - MemNet (Tang et al., 2016b)
 - AOA (Huang et al., 2018)
 - IAN (Ma et al., 2017)
 - TNet-LF (Li et al., 2018) (state-of-the-art)
- Variants
 - ASCNN, which replaces 2-layer GCN with 2-layer CNN in ASGCN

Model	Twi	TTER	La	P14	RES	ът14	RES	т15	RES	т16
	Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1
SVM	63.40 [‡]	63.30 [‡]	70.49 [‡]	N/A	80.16 [‡]	N/A	N/A	N/A	N/A	N/A
LSTM	69.56	67.70	69.28	63.09	78.13	67.47	77.37	55.17	86.80	63.88
MemNet	71.48	69.90	70.64	65.17	79.61	69.64	77.31	58.28	85.44	65.99
AOA	72.30	70.20	72.62	67.52	79.97	70.42	78.17	57.02	87.50	66.21
IAN	72.50	70.81	72.05	67.38	79.26	70.09	78.54	52.65	84.74	55.21
TNet-LF	72.98	71.43	74.61	70.14	80.42	71.03	78.47	59.47	89.07	70.43
ASCNN	71.05	69.45	72.62	66.72	81.73	73.10	78.47	58.90	87.39	64.56
ASGCN-DT ASGCN-DG	71.53 72.15 [†]	69.68 70.40 [†]	74.14 [†] 75.55 ^{†‡}	69.24 [†] 71.05 ^{†‡}	80.86 [‡] 80.77 [‡]	72.19 [‡] 72.02 [‡]	79.34 ^{†‡} 79.89 ^{†‡}	60.78 ^{†‡} 61.89 ^{†‡}	88.69 [†] 88.99 [†]	66.64 [†] 67.48 [†]

Table 2: Model comparison results (%). Average accuracy and macro-F1 score over 3 runs with random initialization. The best two results with each dataset are in bold. The results with \sharp are retrieved from the original papers and the results with \sharp are retrieved from Dong et al. (2014). The marker \dagger refers p < 0.05 by comparing with ASCNN in paired t-test and the marker \ddagger refers p < 0.05 by comparing with TNet-LF in paired t-test.

Model	Twi	TTER	LA	P14	RES	ST14	REST15		RES	т16
	Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1
SVM	63.40 [‡]	63.30 [‡]	70.49 [‡]	N/A	80.16 [‡]	N/A	N/A	N/A	N/A	N/A
LSTM	69.56	67.70	69.28	63.09	78.13	67.47	77.37	55.17	86.80	63.88
MemNet	71.48	69.90	70.64	65.17	79.61	69.64	77.31	58.28	85.44	65.99
AOA	72.30	70.20	72.62	67.52	79.97	70.42	78.17	57.02	87.50	66.21
IAN	72.50	70.81	72.05	67.38	79.26	70.09	78.54	52.65	84.74	55.21
TNet-LF	72.98	71.43	74.61	70.14	80.42	71.03	78.47	59.47	89.07	70.43
ASCNN	71.05	69.45	72.62	66.72	81.73	73.10	78.47	58.90	87.39	64.56
ASGCN-DT	71.53	69.68	74.14 [†]	69.24 [†]	80.86 [‡]	72.19 [‡]	79.34 ^{†‡}	60.78 ^{†‡}	88.69 [†]	66.64 [†]
ASGCN-DG	72.15 [†]	70.40 [†]	75.55 ^{†‡}	71.05†‡	80.77‡	72.02 [‡]	79.89 ^{†‡}	61.89†‡	88.99 [†]	67.48 [†]

Table 2: Model comparison results (%). Average accuracy and macro-F1 score over 3 runs with random initialization. The best two results with each dataset are in bold. The results with \sharp are retrieved from the original papers and the results with \sharp are retrieved from Dong et al. (2014). The marker \dagger refers p < 0.05 by comparing with ASCNN in paired t-test and the marker \ddagger refers p < 0.05 by comparing with TNet-LF in paired t-test.

Model	Twi	TTER	La	P14	RES	ST14	REST15		RES	T16
	Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1
SVM	63.40 [‡]	63.30 [‡]	70.49 [‡]	N/A	80.16 [‡]	N/A	N/A	N/A	N/A	N/A
LSTM	69.56	67.70	69.28	63.09	78.13	67.47	77.37	55.17	86.80	63.88
MemNet	71.48	69.90	70.64	65.17	79.61	69.64	77.31	58.28	85.44	65.99
AOA	72.30	70.20	72.62	67.52	79.97	70.42	78.17	57.02	87.50	66.21
IAN	72.50	70.81	72.05	67.38	79.26	70.09	78.54	52.65	84.74	55.21
TNet-LF	72.98	71.43	74.61	70.14	80.42	71.03	78.47	59.47	89.07	70.43
ASCNN	71.05	69.45	72.62	66.72	81.73	73.10	78.47	58.90	87.39	64.56
ASGCN-DT ASGCN-DG	71.53 72.15 [†]	69.68 70.40 [†]	74.14 [†] 75.55 ^{†‡}	69.24 [†] 71.05 ^{†‡}	80.86 [‡] 80.77 [‡]	72.19 [‡] 72.02 [‡]	79.34 ^{†‡} 79.89 ^{†‡}	60.78 ^{†‡} 61.89 ^{†‡}	88.69 [†] 88.99 [†]	66.64 [†] 67.48 [†]

Table 2: Model comparison results (%). Average accuracy and macro-F1 score over 3 runs with random initialization. The best two results with each dataset are in bold. The results with \sharp are retrieved from the original papers and the results with \sharp are retrieved from Dong et al. (2014). The marker \dagger refers p < 0.05 by comparing with ASCNN in paired t-test and the marker \ddagger refers p < 0.05 by comparing with TNet-LF in paired t-test.

Results

- ASGCN shows a competitive performance against strong baselines
- ASGCN-DG is generally better than ASGCN-DT
- ASGCN is better at capturing long-range word dependencies than ASCNN
- ASGCN performs less well on less grammatical datasets such as

TWITTER

- Implications
 - If we consider taking dependency trees as directed graph (e.g., ASGCN-DT), we'd better also consider the edge label information
 - We need more robust dependency parsers to reduce the effect of error propagation

Ablation Study

• w/o pos. : without position weight

w/o mask: without aspect-specific masking

• w/o GCN: skip GCN layers

Model	TWITTER		LAP14		REST14		REST15		REST16	
1VIOGE1	Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1
BiLSTM+Attn ASGCN-DG	71.24 72.15	69.55 70.40			79.85 80.77		78.97 79.89	58.18 61.89	87.28 88.99	68.18 67.48
ASGCN-DG w/o pos. ASGCN-DG w/o mask ASGCN-DG w/o GCN	72.64	70.63		66.56	79.02		79.58 77.80 79.40	61.55 57.51 61.18	88.04 86.36 87.55	66.63 61.41 66.19

Table 3: Ablation study results (%). Accuracy and macro-F1 scores are the average value over 3 runs with random initialization.

Ablation Study

• w/o pos. : without position weight

w/o mask: without aspect-specific masking

• w/o GCN: skip GCN layers

Model	TWITTER		Lap14		REST14		REST15		REST16	
	Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1
BiLSTM+Attn ASGCN-DG	71.24 72.15	69.55 70.40	72.83 75.55	67.82 71.05		70.03 72.02	78.97 79.89	58.18 61.89	87.28 88.99	68.18 67.48
ASGCN-DG w/o pos. ASGCN-DG w/o mask ASGCN-DG w/o GCN		70.59 70.63 70.63	73.93 72.05 73.51	69.63 66.56 68.83	79.02	72.94 68.29 69.43	79.58 77.80 79.40	61.55 57.51 61.18	88.04 86.36 87.55	66.63 61.41 66.19
								•		

Table 3: Ablation study results (%). Accuracy and macro-F1 scores are the average value over 3 runs with random initialization.

Ablation Study

- Results
 - Position weight is not working for all data
 - Aspect-specific masking has positive effects
 - Removal of GCN brings significant drops in performance (except for TWITTER)
- Implications
 - The integration of position weights is not crucial for less grammatical sentences
 - Aspect-specific masking mechanism is important in ASGCN

Case Study

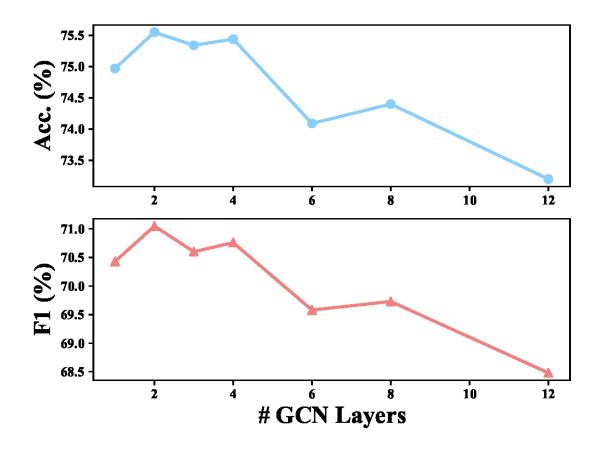
Model	Aspect	Attention visualization	Prediction	Label
MemNet	food	great food but the service was dreadful!	negative x	positive
	staff	The staff should be a bit more friendly.	positive x	negative
	Windows 8 Did not enjoy the new Windows 8 and touchscreen functions.		positive _x	negative
	food	great food but the service was dreadful!	positive.	positive
IAN	staff	The staff should be a bit more friendly.	positive _x	negative
	Windows 8	Did not enjoy the new Windows 8 and touchscreen functions.	neutral _x	negative
	food	great food but the service was dreadful!	positive.	positive
ACCNIN	staff	The staff should be a bit more friendly.	negative.	negative
ASCNN	Windows 8	Did not enjoy the new Windows 8 and touchscreen functions.	positive _x	negative
	food	great food but the service was dreadful!	positive.	positive
ASGCN-DG	staff	staff The staff should be a bit more friendly.		negative
	Windows 8	Did not enjoy the new Windows 8 and touchscreen functions.	negative,	negative

Table 4: Case study. Visualization of attention scores from MemNet, IAN, ASCNN and ASGCN-DG on testing examples, along with their predictions and correspondingly, golden labels. The marker \checkmark indicates correct prediction while the marker \checkmark indicates incorrect prediction.

- Problem Formulation
- Related Work
- Motivation
- Proposed Model ASGCN
- Experiments
- Discussion
- Conclusions & Future Work

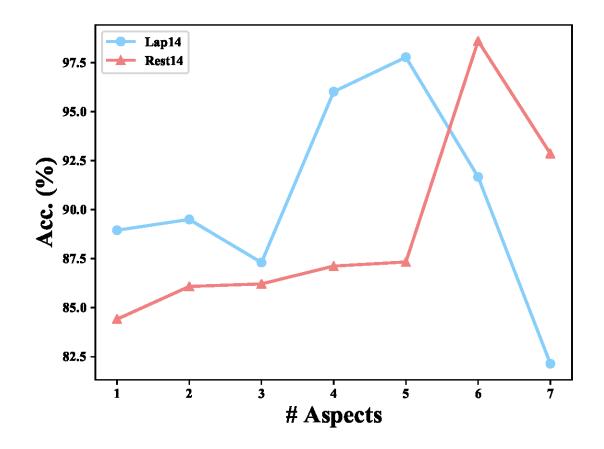
Impact of GCN Layers

We could see that 2 is the best choice under our settings



Effect of Multiple Aspects

 ASGCN shows a *high variance* with respect to sentences with different number of aspect terms



- Problem Formulation
- Related Work
- Motivation
- Proposed Model ASGCN
- Experiments
- Discussion
- Conclusions & Future Work

Conclusions & Future Work

Conclusions

- GCNs over dependency trees bring benefit to the overall performance.
- ASGCN is less effective for <u>ungrammatical contents</u> owing to <u>error</u>
 <u>propagation</u> of dependency trees
- GCNs with graphs are better than those with trees
- ASGCN is less robust to multi-aspect scenarios
- Future work
 - Reduce errors of dependency parsers via joint modelling
 - Incorporate edge information of dependency trees
 - Reduce prediction variance via judging multiple aspects' polarities
 at the same time

The end

Thanks!

Q&A

https://github.com/GeneZC/ASGCN

https://arxiv.org/abs/1909.03477