Aspect-based Sentiment Classification with Aspect-specific Graph Convolutional Networks Chen Zhang¹, Qiuchi Li², Dawei Song¹ ¹Beijing Institute of Technology, China. {czhang, dwsong}@bit.edu.cn ²University of Padua, Italy. {qiuchili}@dei.unipd.it EMNLP 2019, Hong Kong, China - Problem Formulation - Related Work - Motivation - Proposed Model ASGCN - Experiments - Discussion - Conclusions & Future Work - Problem Formulation - Related Work - Motivation - Proposed Model ASGCN - Experiments - Discussion - Conclusions & Future Work ### **Problem Formulation** • **Aspect-based Sentiment Classification** (ABSC): aiming at identifying the sentiment polarities of aspect terms explicitly given in sentences. From the speed to the multi-touch gestures this operating system beats Windows easily. - Aspect terms (a.k.a. opinion targets): operating system, Windows - Corresponding sentiment polarities: positive, negative - Problem Formulation - Related Work - Motivation - Proposed Model ASGCN - Experiments - Discussion - Conclusions & Future Work #### Related Work - Feature-based approaches - Manual features + SVM (Jiang et al., 2011) - Neural network-based approaches - Embedding oriented features (Vo and Zhang, 2015) - Recursive neural networks (Dong et al., 2014) - End-to-end approaches - Mainly based on recurrent neural network and attention mechanism - TD-LSTM (Tang et al., 2016a) - MemNet (Tang et al., 2016b) - TNet (Li et al., 2018) - etc. ### Limitations of the SoTA #### Observation 1: The attention mechanism commonly used in previous ABSC models may result in a given aspect mistakenly attending to *syntactically unrelated* context words as descriptors ### Limitations of the SoTA #### Observation 2: These models are inadequate to determine sentiments depicted by multiple words with *long-range dependencies* "The staff should be a bit more friendly." Long-range dependency ### Limitations of the SoTA Sole attention mechanism (at semantic level) is not enough! - Problem Formulation - Related Work - Motivation - Proposed Model ASGCN - Experiments - Discussion - Conclusions & Future Work Sole attention mechanism (at semantic level) is not enough! How about incorporating with dependency trees (at syntax level)? "Its size is ideal but the weight is unacceptable." **Dependency Tree** Syntactically unrelated words can be ignored by the aspect terms via distance computing "The staff should be a bit more friendly." **Dependency Tree** Long-range dependencies can be shortened - Dependency trees can - draw long sequences of words that are syntactically relevant closer - keep irrelevant component words far away from aspect terms - but they are insufficient to - capture words' semantics - We propose to build Graph Convolutional Networks (GCNs) over dependency trees to - draw syntactically relevant words a step closer to the aspect - exploit both (latent) semantics and syntactic information ### **GNNs** ### Graph Neural Networks (GNNs) #### The bigger picture: Main idea: Pass messages between pairs of nodes & agglomerate Slides from "Structured deep models: Deep learning on graphs and beyond", Thomas Kipf, 2018. ### **GCNs** ### Graph convolutional networks (GCNs) Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016) Consider this undirected graph: Calculate update for node in red: Update rule: $$\mathbf{h}_{i}^{(l+1)} = \sigma \left(\mathbf{h}_{i}^{(l)} \mathbf{W}_{0}^{(l)} + \sum_{j \in \mathcal{N}_{i}} \frac{1}{c_{ij}} \mathbf{h}_{j}^{(l)} \mathbf{W}_{1}^{(l)} \right)$$ Scalability: subsample messages [Hamilton et al., NIPS 2017] \mathcal{N}_i : neighbor indices c_{ij} : norm. constant (fixed/trainable) Slides from "Structured deep models: Deep learning on graphs and beyond", Thomas Kipf, 2018. - Problem Formulation - Related Work - Motivation - Proposed Model ASGCN - Experiments - Discussion - Conclusions & Future Work # Aspect-Specific GCN (ASGCN) - Overview - ASGCN is composed of - Word embeddings - Bidirectional LSTM - GCNs - Aspect-specific masking - Attention - Dependency tree is regarded - As a graph (ASGCN-DG) or - As a tree (ASGCN-DT) ## **Embeddings & BiLSTM** - With the word embeddings of a sentence, a bidirectional LSTM is constructed to produce hidden state vectors \mathbf{H}^c - Following Zhang et al., 2018, we make nodes on the graph aware of context by initializing the nodes representation to \mathbf{H}^c , i.e. $\mathbf{H}^0 = \mathbf{H}^c$ ### **GCNs** Graph convolution at l—th layer (totally L layers) $$\tilde{\mathbf{h}}_i^l = \sum_{j=1}^n \mathbf{A}_{ij} \mathbf{W}^l \mathbf{g}_j^{l-1}$$ $$\mathbf{h}_i^l = \text{ReLU}(\tilde{\mathbf{h}}_i^l/(d_i+1) + \mathbf{b}^l)$$ We also incorporate position weights, which is commonly used in ABSC models, with GCNs $$\mathbf{g}_i^l = \mathcal{F}(\mathbf{h}_i^l)$$ # Aspect-specific Masking Aspect-specific masking is proposed to get aspect-oriented features $$\mathbf{h}_{t}^{L} = \mathbf{0} \quad 1 \le t < \tau + 1, \tau + m < t \le n$$ ### **Attention** Attention scores are computed based on inner product (to facilitate the masking mechanism) $$\beta_t = \sum_{i=1}^n \mathbf{h}_t^{c\top} \mathbf{h}_i^L = \sum_{i=\tau+1}^{\tau+m} \mathbf{h}_t^{c\top} \mathbf{h}_i^L$$ $$\alpha_t = \frac{\exp(\beta_t)}{\sum_{i=1}^n \exp(\beta_i)}$$ Final representation is computed as $$\mathbf{r} = \sum_{t=1}^{n} \alpha_t \mathbf{h}_t^c$$ $$\mathbf{p} = \operatorname{softmax}(\mathbf{W}_p \mathbf{r} + \mathbf{b}_p)$$ - Problem Formulation - Related Work - Motivation - Proposed Model ASGCN - Experiments - Discussion - Conclusions & Future Work ### Datasets & Settings - TWITTER: built by Dong et al. (2014), containing twitter posts - LAP14, REST14, REST15, REST16: respectively from SemEval 2014 task 4, SemEval 2015 task 12 and SemEval 2016 task 5 (Pontiki et al., 2014, 2015, 2016), consisting of data from two categories, i.e. laptop and restaurant - The number of GCN layers is set to 2, which is the best-performing depth in pilot studies (more illustration later) - More parameter setting details could be found in paper - Accuracy and Macro-Averaged F1 - Baselines - SVM (Kiritchenko et al., 2014) - LSTM (Tang et al., 2016a) - MemNet (Tang et al., 2016b) - AOA (Huang et al., 2018) - IAN (Ma et al., 2017) - TNet-LF (Li et al., 2018) (state-of-the-art) - Variants - ASCNN, which replaces 2-layer GCN with 2-layer CNN in ASGCN | Model | Twi | TTER | La | P14 | RES | ът14 | RES | т15 | RES | т16 | |----------------------|-----------------------------|-----------------------------|---|---|--|--|---|---|---|--| | | Acc. | F1 | | SVM | 63.40 [‡] | 63.30 [‡] | 70.49 [‡] | N/A | 80.16 [‡] | N/A | N/A | N/A | N/A | N/A | | LSTM | 69.56 | 67.70 | 69.28 | 63.09 | 78.13 | 67.47 | 77.37 | 55.17 | 86.80 | 63.88 | | MemNet | 71.48 | 69.90 | 70.64 | 65.17 | 79.61 | 69.64 | 77.31 | 58.28 | 85.44 | 65.99 | | AOA | 72.30 | 70.20 | 72.62 | 67.52 | 79.97 | 70.42 | 78.17 | 57.02 | 87.50 | 66.21 | | IAN | 72.50 | 70.81 | 72.05 | 67.38 | 79.26 | 70.09 | 78.54 | 52.65 | 84.74 | 55.21 | | TNet-LF | 72.98 | 71.43 | 74.61 | 70.14 | 80.42 | 71.03 | 78.47 | 59.47 | 89.07 | 70.43 | | ASCNN | 71.05 | 69.45 | 72.62 | 66.72 | 81.73 | 73.10 | 78.47 | 58.90 | 87.39 | 64.56 | | ASGCN-DT
ASGCN-DG | 71.53
72.15 [†] | 69.68
70.40 [†] | 74.14 [†] 75.55 ^{†‡} | 69.24 [†] 71.05 ^{†‡} | 80.86 [‡] 80.77 [‡] | 72.19 [‡] 72.02 [‡] | 79.34 ^{†‡} 79.89 ^{†‡} | 60.78 ^{†‡} 61.89 ^{†‡} | 88.69 [†]
88.99 [†] | 66.64 [†] 67.48 [†] | Table 2: Model comparison results (%). Average accuracy and macro-F1 score over 3 runs with random initialization. The best two results with each dataset are in bold. The results with \sharp are retrieved from the original papers and the results with \sharp are retrieved from Dong et al. (2014). The marker \dagger refers p < 0.05 by comparing with ASCNN in paired t-test and the marker \ddagger refers p < 0.05 by comparing with TNet-LF in paired t-test. | Model | Twi | TTER | LA | P14 | RES | ST14 | REST15 | | RES | т16 | |----------|--------------------|--------------------|---------------------|--------------------|--------------------|--------------------|---------------------|---------------------|--------------------|--------------------| | | Acc. | F1 | | SVM | 63.40 [‡] | 63.30 [‡] | 70.49 [‡] | N/A | 80.16 [‡] | N/A | N/A | N/A | N/A | N/A | | LSTM | 69.56 | 67.70 | 69.28 | 63.09 | 78.13 | 67.47 | 77.37 | 55.17 | 86.80 | 63.88 | | MemNet | 71.48 | 69.90 | 70.64 | 65.17 | 79.61 | 69.64 | 77.31 | 58.28 | 85.44 | 65.99 | | AOA | 72.30 | 70.20 | 72.62 | 67.52 | 79.97 | 70.42 | 78.17 | 57.02 | 87.50 | 66.21 | | IAN | 72.50 | 70.81 | 72.05 | 67.38 | 79.26 | 70.09 | 78.54 | 52.65 | 84.74 | 55.21 | | TNet-LF | 72.98 | 71.43 | 74.61 | 70.14 | 80.42 | 71.03 | 78.47 | 59.47 | 89.07 | 70.43 | | ASCNN | 71.05 | 69.45 | 72.62 | 66.72 | 81.73 | 73.10 | 78.47 | 58.90 | 87.39 | 64.56 | | ASGCN-DT | 71.53 | 69.68 | 74.14 [†] | 69.24 [†] | 80.86 [‡] | 72.19 [‡] | 79.34 ^{†‡} | 60.78 ^{†‡} | 88.69 [†] | 66.64 [†] | | ASGCN-DG | 72.15 [†] | 70.40 [†] | 75.55 ^{†‡} | 71.05†‡ | 80.77‡ | 72.02 [‡] | 79.89 ^{†‡} | 61.89†‡ | 88.99 [†] | 67.48 [†] | Table 2: Model comparison results (%). Average accuracy and macro-F1 score over 3 runs with random initialization. The best two results with each dataset are in bold. The results with \sharp are retrieved from the original papers and the results with \sharp are retrieved from Dong et al. (2014). The marker \dagger refers p < 0.05 by comparing with ASCNN in paired t-test and the marker \ddagger refers p < 0.05 by comparing with TNet-LF in paired t-test. | Model | Twi | TTER | La | P14 | RES | ST14 | REST15 | | RES | T16 | |----------------------|-----------------------------|-----------------------------|---|---|--|--|--|---|---|--| | | Acc. | F1 | | SVM | 63.40 [‡] | 63.30 [‡] | 70.49 [‡] | N/A | 80.16 [‡] | N/A | N/A | N/A | N/A | N/A | | LSTM | 69.56 | 67.70 | 69.28 | 63.09 | 78.13 | 67.47 | 77.37 | 55.17 | 86.80 | 63.88 | | MemNet | 71.48 | 69.90 | 70.64 | 65.17 | 79.61 | 69.64 | 77.31 | 58.28 | 85.44 | 65.99 | | AOA | 72.30 | 70.20 | 72.62 | 67.52 | 79.97 | 70.42 | 78.17 | 57.02 | 87.50 | 66.21 | | IAN | 72.50 | 70.81 | 72.05 | 67.38 | 79.26 | 70.09 | 78.54 | 52.65 | 84.74 | 55.21 | | TNet-LF | 72.98 | 71.43 | 74.61 | 70.14 | 80.42 | 71.03 | 78.47 | 59.47 | 89.07 | 70.43 | | ASCNN | 71.05 | 69.45 | 72.62 | 66.72 | 81.73 | 73.10 | 78.47 | 58.90 | 87.39 | 64.56 | | ASGCN-DT
ASGCN-DG | 71.53
72.15 [†] | 69.68
70.40 [†] | 74.14 [†] 75.55 ^{†‡} | 69.24 [†] 71.05 ^{†‡} | 80.86 [‡] 80.77 [‡] | 72.19 [‡] 72.02 [‡] | 79.34 ^{†‡}
79.89 ^{†‡} | 60.78 ^{†‡} 61.89 ^{†‡} | 88.69 [†]
88.99 [†] | 66.64 [†] 67.48 [†] | Table 2: Model comparison results (%). Average accuracy and macro-F1 score over 3 runs with random initialization. The best two results with each dataset are in bold. The results with \sharp are retrieved from the original papers and the results with \sharp are retrieved from Dong et al. (2014). The marker \dagger refers p < 0.05 by comparing with ASCNN in paired t-test and the marker \ddagger refers p < 0.05 by comparing with TNet-LF in paired t-test. #### Results - ASGCN shows a competitive performance against strong baselines - ASGCN-DG is generally better than ASGCN-DT - ASGCN is better at capturing long-range word dependencies than ASCNN - ASGCN performs less well on less grammatical datasets such as #### TWITTER - Implications - If we consider taking dependency trees as directed graph (e.g., ASGCN-DT), we'd better also consider the edge label information - We need more robust dependency parsers to reduce the effect of error propagation ## **Ablation Study** • w/o pos. : without position weight w/o mask: without aspect-specific masking • w/o GCN: skip GCN layers | Model | TWITTER | | LAP14 | | REST14 | | REST15 | | REST16 | | |--|----------------|----------------|-------|-------|----------------|----|-------------------------|-------------------------|-------------------------|-------------------------| | 1VIOGE1 | Acc. | F1 | | BiLSTM+Attn
ASGCN-DG | 71.24
72.15 | 69.55
70.40 | | | 79.85
80.77 | | 78.97
79.89 | 58.18
61.89 | 87.28
88.99 | 68.18
67.48 | | ASGCN-DG w/o pos.
ASGCN-DG w/o mask
ASGCN-DG w/o GCN | 72.64 | 70.63 | | 66.56 | 79.02 | | 79.58
77.80
79.40 | 61.55
57.51
61.18 | 88.04
86.36
87.55 | 66.63
61.41
66.19 | Table 3: Ablation study results (%). Accuracy and macro-F1 scores are the average value over 3 runs with random initialization. # **Ablation Study** • w/o pos. : without position weight w/o mask: without aspect-specific masking • w/o GCN: skip GCN layers | Model | TWITTER | | Lap14 | | REST14 | | REST15 | | REST16 | | |--|----------------|-------------------------|-------------------------|-------------------------|--------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------| | | Acc. | F1 | | BiLSTM+Attn
ASGCN-DG | 71.24
72.15 | 69.55
70.40 | 72.83
75.55 | 67.82
71.05 | | 70.03
72.02 | 78.97
79.89 | 58.18
61.89 | 87.28
88.99 | 68.18
67.48 | | ASGCN-DG w/o pos.
ASGCN-DG w/o mask
ASGCN-DG w/o GCN | | 70.59
70.63
70.63 | 73.93
72.05
73.51 | 69.63
66.56
68.83 | 79.02 | 72.94
68.29
69.43 | 79.58
77.80
79.40 | 61.55
57.51
61.18 | 88.04
86.36
87.55 | 66.63
61.41
66.19 | | | | | | | | | | • | | | Table 3: Ablation study results (%). Accuracy and macro-F1 scores are the average value over 3 runs with random initialization. ## **Ablation Study** - Results - Position weight is not working for all data - Aspect-specific masking has positive effects - Removal of GCN brings significant drops in performance (except for TWITTER) - Implications - The integration of position weights is not crucial for less grammatical sentences - Aspect-specific masking mechanism is important in ASGCN # Case Study | Model | Aspect | Attention visualization | Prediction | Label | |----------|--|--|-----------------------|----------| | MemNet | food | great food but the service was dreadful! | negative x | positive | | | staff | The staff should be a bit more friendly. | positive x | negative | | | Windows 8 Did not enjoy the new Windows 8 and touchscreen functions. | | positive _x | negative | | | food | great food but the service was dreadful! | positive. | positive | | IAN | staff | The staff should be a bit more friendly. | positive _x | negative | | | Windows 8 | Did not enjoy the new Windows 8 and touchscreen functions. | neutral _x | negative | | | food | great food but the service was dreadful! | positive. | positive | | ACCNIN | staff | The staff should be a bit more friendly. | negative. | negative | | ASCNN | Windows 8 | Did not enjoy the new Windows 8 and touchscreen functions. | positive _x | negative | | | food | great food but the service was dreadful! | positive. | positive | | ASGCN-DG | staff | staff The staff should be a bit more friendly. | | negative | | | Windows 8 | Did not enjoy the new Windows 8 and touchscreen functions. | negative, | negative | Table 4: Case study. Visualization of attention scores from MemNet, IAN, ASCNN and ASGCN-DG on testing examples, along with their predictions and correspondingly, golden labels. The marker \checkmark indicates correct prediction while the marker \checkmark indicates incorrect prediction. - Problem Formulation - Related Work - Motivation - Proposed Model ASGCN - Experiments - Discussion - Conclusions & Future Work ## Impact of GCN Layers We could see that 2 is the best choice under our settings # **Effect of Multiple Aspects** ASGCN shows a *high variance* with respect to sentences with different number of aspect terms - Problem Formulation - Related Work - Motivation - Proposed Model ASGCN - Experiments - Discussion - Conclusions & Future Work ### Conclusions & Future Work #### Conclusions - GCNs over dependency trees bring benefit to the overall performance. - ASGCN is less effective for <u>ungrammatical contents</u> owing to <u>error</u> <u>propagation</u> of dependency trees - GCNs with graphs are better than those with trees - ASGCN is less robust to multi-aspect scenarios - Future work - Reduce errors of dependency parsers via joint modelling - Incorporate edge information of dependency trees - Reduce prediction variance via judging multiple aspects' polarities at the same time ### The end Thanks! Q&A https://github.com/GeneZC/ASGCN https://arxiv.org/abs/1909.03477