Exploiting Position Bias for Robust Aspect Sentiment Classification

Fang Ma, Chen Zhang, Dawei Song Beijing Institute of Technology Beijing

{mfang, czhang, dwsong}@bit.edu.cn

Background

- Fine-grained opinion mining aspect sentiment classification (ASC)
 - E.g., Great food but the service was bad.
- Pervious ASC Models have achieved remarkable in-domain (I.D.) performance on the ASC task
 - By modeling complex interactions between aspects and contexts.
- State-of-the-art ASC models have been shown to suffer from the lack of robustness. Particularly in two scenarios:
 - out-of-domain (O.O.D.) scenario.
 - adversarial (Adv.) scenario.

Scenario	Example	Pred./Lb.
I.D.	Great food but the service was bad!	neg./neg.
O.O.D.	The <u>battery</u> has never worked <u>well</u> .	pos./neg.
Adv.	Awful food but the service was great!	neg./pos.

Motivation

- Prior work observes that highlighting words close to a target aspect would boost I.D. performance (termed as *position bias*)
 - E.g., Great food but the service was bad.
 - Great is close to food and far away from service.
- We hypothesize that position bias is also crucial for robust ASC models in O.O.D. and Adv. settings
 - The hypothesis is statistically evidenced by existing benchmarking datasets.

Method

- Notations
 - Word indices $S = \{w_0, w_1, ..., w_{\gamma}, w_{\gamma+1}, ..., w_{n-1}\}$
 - Word representations $V = \{e_0, e_1, ..., e_{\gamma}, e_{\gamma+1}, ..., e_{n-1}\}$
 - γ denotes the start of the aspect, and the length of the aspect is m
- Position-biased weight

$$p_{i} = \begin{cases} 1 - \frac{\gamma - i}{n - m} & 0 \le i < \gamma \\ \frac{1}{n - m} & \gamma \le i < \gamma + m \\ 1 - \frac{i - \gamma - m + 1}{n - m} & \gamma + m \le i < n \end{cases}$$

- Biased word representations $E = \{p_i e_i\}$
- Position-biased dropout

$$z_i \sim \text{Bernoulli}(p_i)$$

• Biased word representations $E = \{z_i e_i\}$

Experiment

- Datasets
 - SemEval Laptop
 - SemEval Restaurant
 - ARTS Laptop
 - ARTS Restaurant
- Target Models
 - LSTM
 - LSTM-Attn
 - IAN
 - MemNet
 - AOA
 - ROBERTa

Dataset		# pos.	# neu.	# neg.
	train	930	433	800
SEMEVAL-LAP	test	341	169	128
	dev	57	27	66
	train	2,094	579	779
SEMEVAL-REST	test	728	196	196
	dev	70	54	26
ARTS-LAP	test	883	407	587
ARTS-REST	test	1,953	473	1,104

Table 1: Statistics of datasets.

O.O.D. & Adv. Result

• Largely improve robustness of target models

	LAP				REST			
Model	O.O.D.		Adv.		O.O.D.		Adv.	
	Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1
LSTM	71.02	52.15	49.49	43.91	60.60	53.25	53.34	41.99
w/pos-dp	71.48 ↑0.46	50.98↓ 1.17	50.74 ↑1.25	44.38 ↑0.47	63.39 ↑2.79	58.57 ↑5.32	53.57 ↑0.23	42.11 ↑0.12
w/pos-wt	72.96 1.94	55.88↑ 3.73	55.50 ↑6.01	50.03 ↑6.12	66.33 ↑5.73	60.21 ↑6.96	59.03 ↑5.69	48.20 ↑6.21
LSTM-Attn	71.61	53.61	51.33	46.11	62.85	54.97	58.45	49.65
w/pos-dp	71.34↓ 0.27	52.49↓ 1.12	53.76 ↑2.43	48.47 ↑2.36	65.24 ↑2.39	59.07 ↑4.10	58.64 ↑0.19	47.22↓ 2.43
w/pos-wt	72.84 1.23	56.18↑ 2.57	58.53 ↑7.20	53.54 ↑7.43	68.90 ↑6.05	64.48† 9.51	64.80 ↑6.35	55.34 ↑5.69
IAN	72.09	54.44	52.91	47.54	63.82	55.20	57.75	48.12
w/pos-dp	70.95↓ 1.14	51.63 _3.08	52.04↓ 0.87	45.87↓ 1.67	63.57↓ 0.25	56.81 ↑1.61	56.89↓ 0.86	46.90↓ 1.22
w/pos-wt	72.86 ↑0.77	54.88↑ 0.44	56.03↑ 3.12	50.30↑ 2.76	62.45↓ 1.37	55.95 ↑0.75	63.49 ↑5.74	54.04 ↑5.92
MemNet	70.66	52.07	52.00	46.50	57.84	51.15	55.30	46.67
w/pos-dp	69.93↓ 0.73	53.37 ↑1.30	53.54 ↑1.54	47.93 ↑1.43	61.94 †4.10	54.49 ↑3.34	57.31 ↑2.01	45.23 ↓ 1.44
w/pos-wt	70.67↑ 0.01	54.14↑ 2.07	56.04 ↑4.04	49.64↑ 3.14	61.35 ↑3.51	54.85↑ 3.70	61.10 ↑5.80	51.49 ↑4.82
AOA	71.63	52.65	52.16	46.78	63.73	57.00	58.19	49.02
w/pos-dp	72.30↓ 0.67	53.73 ↑1.08	53.56 ↑1.40	48.18 ↑1.40	65.33 ↑1.60	58.31 ↑1.31	56.24↓ 1.95	45.63 \3.39
w/pos-wt	72.61 \dagger_0.98	56.54↑ 3.89	59.07 ↑6.91	54.92↑ 8.14	66.87↑ 3.14	62.02 ↑5.02	64.35 †6.16	54.62↑ 5.60
RoBERTa	83.16	72.99	73.57	69.26	77.62	71.34	79.08	71.79
w/pos-dp	81.98↓ 1.18	70.81↓ 2.18	69.98 \3.59	65.35\\ 3.91	75.61 \2.01	68.00↓ 3.34	77.81↓ 1.27	69.37↓ 2.42
w/pos-wt	83.43 ↑0.27	74.08 1.09	75.72 2.15	72.09† 2.83	79.40↑ 1.78	74.44 ↑3.10	79.47 0.39	73.10 1.31

Table 2: Robustness results (%). O.O.D. on LAP or REST denotes a model is trained in current domain (LAP or REST) and tested on another (REST or LAP). Adv. denotes a model is trained in a domain and tested on its ARTS counterpart. Furthermore, w/pos-dp means a model with position-biased dropout. w/pos-wt means a model with position-biased weight. The small number next to each performance score indicates either performance improvement (↑) or drop (↓) compared with the original model without using position bias, and those highlighted in red are the best-performing ones among two variants.

I.D. Result

• Does not harm I.D. performance

Model	LAP	I.D.	REST I.D.		
	Acc.	F1	Acc.	F1	
LSTM	67.15	60.57	74.57	62.14	
w/pos-dp	67.34	60.27	74.23	61.55	
w/pos-wt	68.78	62.42	76.34	64.85	

Table 3: I.D. results (%) of LSTM on LAP and REST.

Case Study

- Case study on attention weights visualization
 - verifies the effectiveness

Table 4: Case study. The <u>underlined</u> words are aspects. The top two rows are O.O.D. examples, while the bottom two are Adv. examples. ✗ and ✔ refers to without and with pos-wt respectively.

Conclusion

- To improve the robust of ASC models, we propose a simple yet effective inductive bias that should be incorporated, that is, position bias.
- We proposed two mechanisms to capture position bias, namely *position-biased weight* and *position-biased dropout*.
- The experimental results verify our hypothesis that position bias is beneficial for building more robust ASC models.

The End

Thanks a lot.